教案模板通過明確教學(xué)目標(biāo)、內(nèi)容、方法和評價等方面的要求,幫助教師科學(xué)安排教學(xué)過程。接下來,我們一起來看看一份精心設(shè)計的教案模板,希望可以給大家一些啟發(fā)和借鑒。
小學(xué)數(shù)學(xué)《圓與練習(xí)》教案數(shù)學(xué)圓與圓的位置關(guān)系視頻
1、圓的公式c==()s=()。
2、已知圓的周長,公式求d=(),求r=()。
3、圓的半徑擴大2倍,直徑就擴大()倍,周長就擴大()倍,面積就擴大()倍。
4、環(huán)形面積s=()。
5、用圓規(guī)畫一個周長50.24厘米的圓,圓規(guī)兩腳尖之間的距離應(yīng)是()厘米,畫出的這個圓的面積是()平方厘米。
6、大圓半徑是小圓半徑的4倍,大圓周長是小圓周長的()倍,小圓面積是大圓面積的()。
7、圓的半徑增加1/4,圓的周長增加(),圓的面積增加()。
8、一個半圓的周長是20.56分米,這個半圓的面積是()平方分米。
9、將一個圓平均分成1000個完全相同的小扇形,割拼成近似的長方形的周長比原來圓周長長10厘米,這個長方形的面積是()平方厘米。
10、在一個面積是24平方厘米的正方形內(nèi)畫一個最大的圓,這個圓的面積是()平方厘米;再在這個圓內(nèi)畫一個最大的正方形,正方形的面積是()平方厘米。
11、大圓半徑是小圓半徑的3倍,大圓面積是84.78平方厘米,則小圓面積為()平方厘米。
12、大圓半徑是小圓半徑的2倍,大圓面積比小圓面積多12平方厘米,小圓面積是()平方厘米。
二.判斷。
(1)通過圓心的線段,叫做圓的直徑。()。
(2)周長是所在圓直徑的3倍多一些。()。
(3)半徑是直徑的一半。()。
(4)任何圓的圓周率都是3.14。()。
(5)半圓的周長等于圓的周長的1/2加直徑的長,所以半個圓的面積等于圓面積的1/2加直徑的長度。()。
(6)圓的半徑擴大5倍,圓的`面積也擴大5倍。()。
(7)半徑是2厘米的圓,周長和面積相等。()。
(8)半圓形紙片的周長就是圓周長的一半。()。
(9)把半徑3厘米的圓等分成十六份,拼成一個近似長方形,長方形的周長比圓的周長長。()。
三、應(yīng)用題。
1、一個環(huán)形的外圓半徑是8分米,內(nèi)圓半徑5分米,求環(huán)形的面積?
4、
(1)軋路機前輪直徑1.2米,每分鐘滾動6周。1小時能前進多少米?
圓與圓的位置關(guān)系教案
1、使學(xué)生在觀察、操作、畫圖等活動中感受并發(fā)現(xiàn)圓的有關(guān)特征,知道什么是圓的圓心、半徑和直徑;能借助工具畫圖,能用圓規(guī)畫指定大小的圓;能應(yīng)用圓的知識解釋一些日常生活現(xiàn)象。
2、使學(xué)生在活動中進一步積累認識圖形的學(xué)習(xí)經(jīng)驗,增強空間觀念,發(fā)展數(shù)學(xué)思考。
3、使學(xué)生進一步體驗圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的自信心。
在觀察、操作、畫圖等活動中感受并發(fā)現(xiàn)圓的有關(guān)特征,能借助工具畫圖,能用圓規(guī)畫指定大小的圓。
教學(xué)難點:能應(yīng)用圓的知識解釋一些日常生活現(xiàn)象。
教學(xué)準(zhǔn)備:多媒體課件,一些圓形物體和圓形紙片,圓規(guī)。
學(xué)具準(zhǔn)備:圓規(guī)、學(xué)具以及收集的一些圓形物體的圖片。
課前談話:羊吃草的故事(猜謎)。
有一個人在一片青草地上釘了一根木樁,用一根繩子拴了一只羊在那里。
先請同學(xué)們猜測一個字。再猜兩個字的水果名。
師:我們來看一看羊吃草的.范圍有多大?
(用電腦演示羊拉緊繩子旋轉(zhuǎn)一周的情況,讓學(xué)生直觀的看到原來羊能吃到的草的范圍是一個圓。)。
一、談話導(dǎo)入。
1、對于圓,同學(xué)們一定不會感到陌生吧,生活中,你們在哪兒見過圓形?
4、有人說,因為有了圓,我們的世界才變得如此美妙而神奇。今天這節(jié)課,就讓我們一起去探索圓的奧秘,好嗎?(板書課題:圓的認識)。
二、動手嘗試,認識圓的特征。
(一)、初步認識圓。
1、說了這么多圓,看了這么多圓,你想不想親自動手畫一個圓?先動腦筋想一想,再用你手頭的的。(問題就只工具動手畫一畫。(學(xué)生動手畫圓)。
2、引導(dǎo)學(xué)生交流所畫的圓,并讓學(xué)生說說是怎樣畫要停留在借助什么來畫的,不要作過深的追問)。
3、比較:看看你所畫的圓,和以前學(xué)過的平面圖形有什么不同?
交流:以前所學(xué)的圖形都是由線段圍成的,而圓是由曲線圍成的。
(二)、用圓規(guī)畫圓。
1、剛才有同學(xué)用圓規(guī)畫出了一個圓,其他同學(xué)會畫嗎?請拿出準(zhǔn)備的圓規(guī),在白紙上畫一個圓。
交流:誰來說說用圓規(guī)是怎樣畫圓的?或者說在畫的過程中要注意些什么?(指名交流,引導(dǎo)學(xué)生說出圓規(guī)的使用方法。)。
要點:針尖要戳在紙上,另一只腳是筆,兩腳隨意叉開。
3、全班畫一個直徑是4厘米的圓:我們把兩腳叉開4厘米來畫一個圓。(畫好的同學(xué)拿出剪刀,把畫的圓剪下來。)。
(三)、圓各部分名稱。
1、圓和其它圖形一樣也有它各部分的名稱,請同學(xué)們打開書,把例2的一段話認真地讀一讀。
2、反饋交流:你知道了關(guān)于圓的哪些知識?
(圓心、半徑、直徑,分別用字母o、r、d表示。)。
根據(jù)學(xué)生回答,教師在黑板上板書。并要求學(xué)生在自己的圓上將個部分標(biāo)一標(biāo)、畫一畫。
3、完成“練一練”第1題。
出示3個圓,分別判斷,說說是怎樣想的。
(四)、圓心、半徑、直徑的關(guān)系。
1、學(xué)到現(xiàn)在,關(guān)于圓,該有的知識我們也探討地查差不多了。那你們覺得還有沒有什么值得我們深入地去研究?其實不說別的,就圓心、直徑、半徑,還藏著許多豐富的規(guī)律呢,同學(xué)們想不想自己動手研究研究?大家手頭都有圓片、直尺、圓規(guī)等等,這就是咱們的研究工具。待會兒就請大家動手折一折、量一量、比一比、畫一畫,相信大家一定會有不小的收獲。另外,我還有兩點小小的建議:第一,研究過程中,別忘了把你們組的結(jié)論,哪怕是任何細小的發(fā)現(xiàn)都記錄在自備本上,到時候一起來交流。第二,實在沒啥研究了,老師還為每個小組準(zhǔn)備了一份研究提示,到時候打開看看,或許會對大家有所幫助。
學(xué)生小組活動。
2、反饋交流:
要點:
(1)、在同一個圓里可以畫無數(shù)條半徑,無數(shù)條直徑。(強調(diào)在同一個圓里)。
(2)、在同一個圓里,半徑的長度都相等,直徑的長度也都相等。(強調(diào)在同一個圓里)。
(3)、同一個圓里半徑是直徑的一半,r=2/d;直徑是半徑的2倍,d=2r。
(4)、圓是軸對稱圖形,有無數(shù)條對稱軸,這些對稱軸就是圓的直徑。
還有其他的發(fā)現(xiàn)嗎?學(xué)生可以自由說。
3、完成練習(xí)十七第1題。
學(xué)生自由填表,反饋交流。
三、應(yīng)用拓展。
完成“練一練”第2題。
(1)、讀題,說說是怎樣理解題意的。(注意說清直徑是5厘米,圓規(guī)兩腳叉開即半徑應(yīng)該是2.5厘米)。
(2)、學(xué)生畫一畫,反饋交流。
四、全課總結(jié)。
通過大家的探究,我們已經(jīng)獲得了許多關(guān)于圓的知識,現(xiàn)在讓我們再來看看剛才的畫面(課件再次顯示)。
這不就是圓的魅力所在嗎?
五、布置作業(yè)。
初三數(shù)學(xué)圓的性質(zhì)及直線和圓的位置關(guān)系復(fù)習(xí)教案
教學(xué)目標(biāo):
1.使學(xué)生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。
重點難點:
2.難點:運用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學(xué)過程:
一.復(fù)習(xí)引入。
(目的:讓學(xué)生將點和圓的位置關(guān)系與直線和圓的位置關(guān)系進行類比,以便更好的掌握直線和圓的位置關(guān)系)。
二.定義、性質(zhì)和判定。
1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
初三數(shù)學(xué)圓的性質(zhì)及直線和圓的位置關(guān)系復(fù)習(xí)教案
尊敬的各位評委,親愛的各位同行,大家好!今天我的說課內(nèi)容是人教版九年級上冊第二十四章第二節(jié)第二課時的直線與圓的位置關(guān)系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學(xué)情分析、教學(xué)目標(biāo)、學(xué)法教法、教學(xué)過程和板書設(shè)計六個方面對本課進行說明。
一、教材分析。
教材的地位和作用。
圓在平面幾何中占有重要地位,它被安排在初中數(shù)學(xué)第二十四章,屬于一個提高階段。而直線和圓的位置關(guān)系又是本章的一個中心內(nèi)容。從知識體系上看:它有著承上啟下的作用,既是對點與圓的位置關(guān)系的延續(xù)與提高,又是后面學(xué)習(xí)切線的性質(zhì)和判定、圓和圓的位置關(guān)系及高中繼續(xù)學(xué)習(xí)幾何知識的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看:它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比等數(shù)學(xué)思想方法,有助于提高學(xué)生的數(shù)學(xué)思維品質(zhì)。
二、學(xué)情分析。
在此之前學(xué)生已經(jīng)學(xué)習(xí)了點和圓的位置關(guān)系,對圓有了一定的感性和理性認識,但在某種程度上特別是平面幾何問題上,學(xué)生還是依靠事物的具體直觀形象。加之九年級學(xué)生好奇心強,活潑好動,注意力易分散,認知水平大都停留在表面現(xiàn)象,對親身體驗的事物容易激發(fā)求知的渴望,因此要想方設(shè)法,引導(dǎo)學(xué)生深入思考、主動探究、主動獲取新知識。
三、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認知基礎(chǔ)及本課的教材的地位、作用,結(jié)合數(shù)學(xué)課程標(biāo)準(zhǔn)我將確定如下的教學(xué)目標(biāo):
(2)通過觀察、實驗、合作交流等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;
陪養(yǎng)學(xué)生觀察、分析和概括的能力;
(4)體會事物間的相互滲透,感受數(shù)學(xué)思維的嚴(yán)謹性,并在合作學(xué)習(xí)中體驗成功的喜悅。
教學(xué)的重難點:
直線與圓的位置關(guān)系教案
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標(biāo):
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運用知識的解決能力。
情感與態(tài)度目標(biāo):讓學(xué)生從運動的觀點來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。
學(xué)生看投影并思考問題。
調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
《圓與圓的位置關(guān)系》的教案
一、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認知的基礎(chǔ)及本課的教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:
(1)知識目標(biāo):
a、知道直線和圓相交、相切、相離的定義。
會根據(jù)直線和圓相切的定義畫出已知圓的切線。
c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。
2)能力目標(biāo):
讓學(xué)生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運動,培養(yǎng)學(xué)生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。
3)情感目標(biāo):
在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識,把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運動的觀點觀察圓與直線的位置關(guān)系,有利于學(xué)生把實際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點的變化。
二.教材的重點難點。
直線和圓的三種位置關(guān)系是重點,本課的難點是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。
三.在教學(xué)中如何突破這個重點和難點。
解決重點的方法主要是:(1)由學(xué)生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學(xué)過的知識把它們抽象出幾何圖形再展示出來(讓學(xué)生嘗試通過日出的情境畫出幾種情況),(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運動的觀點觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。
在說直線與圓的位置關(guān)系時,如何突破這個難點:(1)突破直線和圓不能有兩個以上的公共點,讓學(xué)生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點,那么這與不在同一條直線上的三點就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運動的觀點觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。
(3)突破直線和圓有唯一一個公共點是直線和圓相切(指直線與圓有一個并且只有一個公共點,它與有一個公共點的含義不同)。
(4)突破直線和圓的位置關(guān)系的(如果圓o的半徑為r,圓心到直線的距離為d,
3.直線l與圓o相離=dr。
(上述結(jié)論中的符號“=”讀作“等價于”)。
式子的左邊反映是兩個圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。
四、教學(xué)程序。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復(fù)習(xí)點與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。
[鞏固練習(xí)]例1,
出示例題。
(1)r=2cm;(2)r=2.4cm;(3)r=3cm。
由學(xué)生填寫下例表格。
公共點個數(shù)。
圓心到直線距離d與半徑r關(guān)系。
公共點名稱。
直線名稱。
圖形。
補充練習(xí)的答案由師生一起歸納填寫。
教學(xué)小結(jié)。
直線與圓的位置關(guān)系,讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。然后老師在多媒體打出圖表。
本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實生活中抽象出數(shù)學(xué)模型,體現(xiàn)了數(shù)學(xué)產(chǎn)生于生活的思想,并且將新舊知識進行了類比、轉(zhuǎn)化,充分發(fā)揮了學(xué)生的主觀能動性,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體,真正成為學(xué)習(xí)的主人,轉(zhuǎn)變了角色。
《直線和圓的位置關(guān)系》教學(xué)反思
"思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
在《直線和圓的位置關(guān)系》一課教學(xué)后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準(zhǔn)確。 最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。
直線和圓的位置關(guān)系教學(xué)反思
本節(jié)課的教學(xué)我采用先亮標(biāo),亮自學(xué)提示及檢測題的形式讓學(xué)生先自學(xué)。依據(jù)自學(xué)檢測題檢驗學(xué)生自學(xué)結(jié)果。然后精講了切線性質(zhì)定理及分析兩種證明方法。然后結(jié)合小黑板練習(xí)鞏固提高這節(jié)知識。
講課時我改變了原來講后再練的方式,采用了講評一個知識點后配基礎(chǔ)練習(xí)題,鞏固此知識點的方法。避免講后再練,練習(xí)與知識的脫節(jié),練習(xí)緊跟。精講知識后,再配以比基礎(chǔ)題(鞏固基礎(chǔ)知識點)層次高的兩組練習(xí),讓學(xué)生先做,采用舉手的方式調(diào)查學(xué)生自己運用知識解決問題的情況。講前85%的同學(xué)都舉手做完,還有個別同學(xué)做到運用靈活方法解決問題。中午三道作業(yè)學(xué)生掌握良好。其余學(xué)生在我的講解下也掌握今天的內(nèi)容,會運用兩種方法判斷直線和圓的位置關(guān)系。知道有切線可連圓心和切點得垂直關(guān)系這種基本輔助線。
本節(jié)課的教學(xué)總的來說很順利,學(xué)生掌握良好,由于課程標(biāo)準(zhǔn)對于本節(jié)課要求不高,緊扣標(biāo)準(zhǔn),走進中招。本節(jié)課若能再配合課后檢測題,及時精確把握,學(xué)生掌握情況會更完美。
重建:講課前,先亮標(biāo),亮自學(xué)提示及檢測題,以問題形式精講切線性質(zhì)定理及證明。配合練習(xí)、提高練習(xí),下課前5分鐘配簡單檢測題以便更全面把握學(xué)生掌握的情況。
教師的行為直接影響著學(xué)生的學(xué)習(xí)方式,要讓學(xué)生真正成為學(xué)習(xí)的主人,積極參與課堂學(xué)習(xí)活動,因此在教學(xué)中讓學(xué)生想象、觀察、動手實踐、發(fā)現(xiàn)內(nèi)在的聯(lián)系并利用類比歸納的方法,探索規(guī)律,指導(dǎo)學(xué)生合作、研究并嘗試用學(xué)到的知識解決實際問題。
點和圓的位置關(guān)系教學(xué)設(shè)計
本節(jié)課的教學(xué)內(nèi)容是點和圓的位置關(guān)系,看似內(nèi)容少而簡單,但讓學(xué)生真正理解如何由圖形關(guān)系得出數(shù)量關(guān)系,以及從數(shù)量關(guān)系聯(lián)想到圖形的位置關(guān)系,卻并非簡單。如果忽略了這一過程,學(xué)生會做題,卻無法體驗數(shù)學(xué)的本質(zhì),無法體驗數(shù)形結(jié)合思想。所以本節(jié)課中引導(dǎo)學(xué)生由圖形聯(lián)想到數(shù)量關(guān)系,即有點和圓的位置關(guān)系聯(lián)想到點到圓心的距離與半徑的大小關(guān)系。我是分兩步的得出的:
第一步讓學(xué)生從圖形上直觀的認識點和圓的三種位置關(guān)系,第二步引導(dǎo)學(xué)生從數(shù)量上判斷圖形位置,是為了讓學(xué)生更好的體驗數(shù)形結(jié)合思想。數(shù)量關(guān)系的探索是這節(jié)課的一個重點內(nèi)容,也是這節(jié)課的.難點所在。為解決這個問題,在課前布置了學(xué)生進行預(yù)習(xí),預(yù)習(xí)內(nèi)容為以下6點:
2、經(jīng)過一個點可以作幾個圓?
3、經(jīng)過兩個點可以作幾個圓?圓心有什么特點?
4、經(jīng)過不在同一直線上的三點可以作幾個圓?
5、過在同一直線上的三點能作圓嗎?如果不能如何證明。
6、過在不在同一直線上的三點能作圓嗎?如果能,能做幾個,如果不能,請說明理由。
通過課堂上的提問反饋,可以感受到學(xué)生通過預(yù)習(xí),在自主學(xué)習(xí)的基礎(chǔ)上能更好的理解知識,從而進一步提高課堂聽課的效率。
新課標(biāo)指出,自主探究、動手實踐、合作交流應(yīng)成為學(xué)生的主要學(xué)習(xí)方式,教師應(yīng)引導(dǎo)學(xué)生主動的從事觀察、實驗、猜測、驗證、推理與交流等數(shù)學(xué)活動,從而使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略。本節(jié)課中“不在同一直線上的三點可以確定一個圓”讓學(xué)生經(jīng)歷了循序漸近的探究過程,即通過畫圖、觀察、分析、發(fā)現(xiàn)經(jīng)過一個已知點可以畫無數(shù)個圓,經(jīng)過兩個已知點也可以畫無數(shù)個圓,但其圓心分布在連接兩點線段的垂直平分線上,經(jīng)過不在同一直線上的三點可以確定一個圓。
通過這節(jié)課,學(xué)生們深切感受到預(yù)習(xí)在學(xué)習(xí)中的重要作用,也通過自己的預(yù)習(xí)對所學(xué)知識有理更深入的理解,從而提高了課堂效率;同時,通過對這節(jié)課的反復(fù)推敲設(shè)計,我也深切感受到對教材研究的重要性。
點和圓的位置關(guān)系教學(xué)設(shè)計
一、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認知的基礎(chǔ)及本課的教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:
(1)知識目標(biāo):
a、知道直線和圓相交、相切、相離的定義。
會根據(jù)直線和圓相切的定義畫出已知圓的切線。
c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。
2)能力目標(biāo):
讓學(xué)生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運動,培養(yǎng)學(xué)生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。
3)情感目標(biāo):
在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識,把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運動的觀點觀察圓與直線的位置關(guān)系,有利于學(xué)生把實際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點的變化。
二、教材的重點難點。
直線和圓的三種位置關(guān)系是重點,本課的難點是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。
三、教學(xué)重點和難點。
解決重點的方法主要是:(1)由學(xué)生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學(xué)過的知識把它們抽象出幾何圖形再展示出來(讓學(xué)生嘗試通過日出的情境畫出幾種情況),(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運動的觀點觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。
在說直線與圓的位置關(guān)系時,如何突破這個難點:(1)突破直線和圓不能有兩個以上的公共點,讓學(xué)生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點,那么這與不在同一條直線上的三點就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運動的觀點觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。
(3)突破直線和圓有唯一一個公共點是直線和圓相切(指直線與圓有一個并且只有一個公共點,它與有一個公共點的含義不同)。
(4)突破直線和圓的位置關(guān)系的(如果圓o的半徑為r,圓心到直線的距離為d,
3.直線l與圓o相離=dr。
(上述結(jié)論中的符號“=”讀作“等價于”)。
式子的左邊反映是兩個圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。
四、教學(xué)程序。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復(fù)習(xí)點與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。
《點與圓的位置關(guān)系》教學(xué)反思
《點與圓的位置關(guān)系》教學(xué)反思本節(jié)課的教學(xué)內(nèi)容是點和圓的位置關(guān)系,看似內(nèi)容少而簡單,但讓學(xué)生真正理解如何由圖形關(guān)系得出數(shù)量關(guān)系,以及從數(shù)量關(guān)系聯(lián)想到圖形的位置關(guān)系,卻并非簡單。教師如果忽略了這一過程,學(xué)生會做題,卻無法體驗數(shù)學(xué)的本質(zhì),無法體驗數(shù)形結(jié)合思想。所以本節(jié)課中點和圓的位置關(guān)系讓學(xué)生經(jīng)歷了由圖形關(guān)系聯(lián)想到數(shù)量關(guān)系、由數(shù)量關(guān)系聯(lián)想到圖形關(guān)系的過程,是學(xué)生真正理解點和圓的位置關(guān)系與點到圓心的距離和半徑之間關(guān)系的等價。
2、經(jīng)過一個點可以作幾個圓?
3、經(jīng)過兩個點可以作幾個圓?圓心有什么特點?
4、經(jīng)過不在同一直線上的三點可以作幾個圓?
5、過在同一直線上的三點能作圓嗎?如果不能如何證明。
6、經(jīng)過三角形三個頂點的圓即通過畫圖、觀察、分析、發(fā)現(xiàn)經(jīng)過一個已知點可以畫無數(shù)個圓,經(jīng)過兩個已知點也可以畫無數(shù)個圓,但其圓心分布在連接兩點線段的垂直平分線上,經(jīng)過不在同一直線上的三點可以確定一個圓。
歸納:點與圓有哪幾種位置關(guān)系?點與圓的位置關(guān)系可以根據(jù)什么來判定?通過這節(jié)課,學(xué)生們深切感受到預(yù)習(xí)在學(xué)習(xí)中的重要作用,也通過自己的預(yù)習(xí)對所學(xué)知識有理更深入的理解,提高了課堂效率;同時,通過對這節(jié)課的反復(fù)推敲設(shè)計與反思,我也深切感受到對教材研究的重要性。
點和圓的位置關(guān)系教學(xué)設(shè)計
《點與圓的位置關(guān)系》是人教版九年級上冊第二十四章第二節(jié),這一節(jié)分為兩個部分(即點與圓的位置關(guān)系和外接圓、外心),本節(jié)課主要學(xué)習(xí)了點與圓的三種位置關(guān)系。在理解圓的定義的基礎(chǔ)上展開了點與圓的位置關(guān)系教學(xué),通過圓的定義得到了圓內(nèi)點到圓心的距離都小于半徑,圓上點到圓心的距離都等于半徑,圓外點到圓心的距離都大于半徑,每一個圓都把平面上的點分成三部分:圓內(nèi)的點、圓上的點和圓外的點。學(xué)生理解透徹,掌握較好。
反思教學(xué)方法:
本節(jié)課我結(jié)合九年級學(xué)生的認知特點,從學(xué)生已有的生活經(jīng)驗和知識出發(fā),讓學(xué)生通過自己歸納,、總結(jié),并且主動的研究,從而學(xué)會知識。學(xué)生先學(xué),先練,老師后講,后教,促使他們在自主探究的過程中,真正理解和掌握數(shù)學(xué)知識,數(shù)學(xué)思想和數(shù)學(xué)方法,同時獲得廣泛的數(shù)學(xué)經(jīng)驗,效果較為理想。
反思目標(biāo)完成情況:
目標(biāo)1:學(xué)生能夠清楚的口述點和圓的位置關(guān)系以及相對應(yīng)的點到圓心的距離和半徑的大小關(guān)系。
目標(biāo)2:通過動手探究,知道了不在同一條直線上的三個點可以確定一個圓。但有十個同學(xué)因動手作圖能力差,最后實在別人的幫助下完成的自學(xué)任務(wù),還有三個同學(xué)竟然沒有作圖工具。
目標(biāo)3:掌握了三角形的外接圓和外心概念,都能準(zhǔn)確的找見三角形的外心并作出三角形的外接圓。
每個環(huán)節(jié)缺少相對應(yīng)的練習(xí)題是這節(jié)課最大的失敗之處,因為課前考慮到學(xué)生的動手探究能力差,耗時,為了完成教學(xué)任務(wù),因此沒有設(shè)置相應(yīng)的練習(xí)題。特別是在“探究1”環(huán)節(jié),學(xué)生雖對點與圓的位置關(guān)系掌握較好,但在一般的習(xí)題中,多考查由“點到圓心的距離”推出“點和圓的位置關(guān)系”,反推得難度相對于順推稍高,所以恐學(xué)生解決問題存有困難,且解題過程的書寫存有問題,在課后輔導(dǎo)中要進行訓(xùn)練。