作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那么教案應該怎么制定才合適呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
一次函數(shù)的教案例學設計篇一
課件出示教材第75頁圖4-1及相關問題,并由學生討論完成題目.
師:在現(xiàn)實生活中一個量隨另一個量的變化而變化的現(xiàn)象大量存在.函數(shù)就是研究一些量之間確定性依賴關系的數(shù)學模型.(板書課題)
二、探究新知
函數(shù)的相關概念.
(1)課件出示教材第76頁“做一做”第1題.
師:層數(shù)n和物體總數(shù)y之間是什么關系?
引導學生得出:只要給定層數(shù),就能求出物體總數(shù).
(2)課件出示教材第76頁“做一做”第2題.
師:在關系式t=t+273中,兩個變量中若知道其中一個,是否可以確定另外一個?
一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數(shù),其中x是自變量.
表示函數(shù)的方法一般有:列表法、關系式法和圖象法.
對于自變量在可取值范圍內(nèi)的一個確定的值a,函數(shù)有唯一確定的對應值,這個對應值稱為當自變量等于a時的函數(shù)值.
理解函數(shù)概念時應注意:
(1)在某一變化過程中有兩個變量x與y.
(2)這兩個變量互相聯(lián)系,當變量x取一個確定的值時,變量y的值就隨之確定.
(3)對于變量x的每一個值,變量y都有唯一的一個值與它對應,如在關系式y(tǒng)2=x(x0)中,當x=9時,y對應的值為3或-3,不唯一,則y不是x的函數(shù).
師:上述問題中,自變量能取哪些值?
指出要根據(jù)實際問題確定自變量的取值范圍.
一次函數(shù)的教案例學設計篇二
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關系,小華八點離開家,十四點回到家,根據(jù)這個曲線圖,請回答下列問題:
(1)到達離家最遠的地方是幾點?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)小華在往返全程中,在什么時間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時離家21千米?(寫出計算過程)
一次函數(shù)的教案例學設計篇三
1.內(nèi)容
正比例函數(shù)的概念.
2.內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.
對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關系式,觀察比較概括出這些函數(shù)關系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念.
二、目標和目標解析
1.目標
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
2.目標解析
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
三、教學問題診斷分析
正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度.
因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程.
四、教學過程設計
1.情境引入,初步感知
引言
上一節(jié)我們已經(jīng)學習了關于函數(shù)的最基礎的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題1 2011年開始運營的京滬高速鐵路全長1 318km.設列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導學生分析問題中的數(shù)量關系,這是典型的行程問題,數(shù)量關系是學生熟悉的“路程=速度×時間”.
設計意圖:讓學生真切感受數(shù)學與實際的聯(lián)系,即數(shù)學理論來源于實際又服務于實際.幫助學生逐步提高將實際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
設計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應對其取值范圍作出說明.
對問題(2)的分析解答過程讓學生回答下列問題:
追問1這個問題中兩個變量之間的對應關系是函數(shù)關系嗎?如果是,試說明理由.
設計意圖:讓學生感受量與量之間的函數(shù)關系,體會函數(shù)關系蘊涵在實際問題中,激發(fā)學生探究興趣.對理由的說明學生可能有障礙,此時教師要引導學生回顧函數(shù)概念的學習過程,用函數(shù)的概念來回答:問題中的兩個變量,當其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應.
追問2 請你寫出y與t之間的函數(shù)解析式,并分析解析式在結構上是什么形式?
追問3 對于自變量t和函數(shù)y的每一對對應值,y與t的比值,
一次函數(shù)的教案例學設計篇四
(1)解:y=2.2x,y是x的一次函數(shù),也是x的正比例函數(shù)。
(2)解:y=100+8x,y是x有一次函數(shù)。
2、補充練習
課件顯示6.2a1、見下表:
x-2-1012…
y-5-2147…
2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設每戶每月用水量為x米3,應繳水費y元。(1)寫出每月用水量不超過6米3和超過6米3時,y與x之間的函數(shù)關系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。
一次函數(shù)的教案例學設計篇五
1、掌握去括號的法則
2、能正確且較為熟練地運用去括號的符號法則去化簡代數(shù)式 過程與方法目標 學習目標
1、通過觀察、合作交流、討論總結等活動得出去括號的符號法則,培養(yǎng)學生觀察、分析、總結的能力。
2、通過例題講解,和鞏固練習,培養(yǎng)學生的計算能力 班級:初一四班nn
1、數(shù)學知識:
2、數(shù)學思想方法: 布置作業(yè): 板 書 設 計nn教學反思nn